inverse discrete fourier transform iDFT 2D algorithm source code
odwrotna dyskretna transformacja fouriera idft 2d algorytm kod źródłowy
#include <iostream>
#include "conio.h"
#include <stdlib.h>
#include <math.h>
#include <time.h>
using namespace std;
//complex number method:
void fun_inverse_discrete_fourier_transform_DFT_2D_method1(int N,double table[][12][12]);
void fun_discrete_fourier_transform_DFT_2D_method1(int N,double table[][12][12]);
//complex number method:
void fun_inverse_discrete_fourier_transform_DFT_2D_method2(int N,double table[][12][12]);
void fun_discrete_fourier_transform_DFT_2D_method2(int N,double table[][12][12]);
//other method not complex number signal need to be normal number
void fun_inverse_discrete_fourier_transform_DFT_2D_method3(int N,double table[][12][12]);
void fun_discrete_fourier_transform_DFT_2D_method3(int N,double table[][12][12]);
//inverse_method1 works only witch discrete _method1
//inverse_method2 works only witch discrete _method2
//inverse_method3 works only witch discrete _method3
static double diffclock(clock_t clock2,clock_t clock1)
{
double diffticks=clock1-clock2;
double diffms=(diffticks)/(CLOCKS_PER_SEC/1000);
return diffms;
}
int main()
{
//zał N=okres sygnału w tablicy tab[] wtedy rodzielczość = 1 Hz
int N=12;
double time2;
//tab[0]][N][N]=re
//tab[1]][N][N]=im
double tab[2][12][12]={{
{-0.923879533,0.70664666,0.996551596,0.923879533,1.659378744,1.369473808,-0.923879533,
-2.29335334,-0.735499212,0.923879533,-0.072672064,-1.630526192},
{-0.923879533,0.70664666,0.996551596,0.923879533,1.659378744,1.369473808,-0.923879533,
-2.29335334,-0.735499212,0.923879533,-0.072672064,-1.630526192},
{-1.630526192,-0.923879533,0.70664666,0.996551596,0.923879533,1.659378744,1.369473808,-0.923879533,
-2.29335334,-0.735499212,0.923879533,-0.072672064},
{-0.923879533,0.70664666,0.996551596,0.923879533,1.659378744,1.369473808,-0.923879533,
-2.29335334,-0.735499212,0.923879533,-0.072672064,-1.630526192},
{-0.735499212,-0.923879533,0.70664666,0.996551596,0.923879533,1.659378744,1.369473808,-0.923879533,
-2.29335334,0.923879533,-0.072672064,-1.630526192},
{-0.923879533,0.70664666,0.996551596,0.923879533,1.659378744,1.369473808,-0.923879533,
-2.29335334,-0.735499212,0.923879533,-0.072672064,-1.630526192},
{-0.923879533,0.70664666,0.996551596,0.923879533,1.659378744,1.369473808,-0.923879533,
-2.29335334,-0.735499212,0.923879533,-0.072672064,-1.630526192},
{-0.923879533,0.70664666,0.996551596,0.923879533,1.659378744,1.369473808,-0.923879533,
-2.29335334,-0.735499212,0.923879533,-0.072672064,-1.630526192},
{-0.923879533,0.70664666,0.996551596,0.923879533,1.659378744,1.369473808,-0.923879533,
-2.29335334,-0.735499212,0.923879533,-0.072672064,-1.630526192},
{-0.923879533,0.70664666,0.996551596,0.923879533,1.659378744,1.369473808,-0.923879533,
-2.29335334,-0.735499212,0.923879533,-0.072672064,-1.630526192},
{-0.923879533,0.70664666,0.996551596,0.923879533,1.659378744,1.369473808,-0.923879533,
-2.29335334,-0.735499212,0.923879533,-0.072672064,-1.630526192},
{-0.923879533,0.70664666,0.996551596,0.923879533,1.659378744,1.369473808,-0.923879533,
-2.29335334,-0.735499212,0.923879533,-0.072672064,-1.630526192}
}};
//tab[0]][N][N]=re
//tab[1]][N][N]=im
tab[1][0][0]=5.1234;//im number
tab[1][1][0]=9.1234;//im number
tab[1][2][1]=-3.1234;//im number
cout<<" "<<tab[1][0][0]<<endl;
cout<<" "<<tab[1][1][0]<<endl;
cout<<" "<<tab[1][2][1]<<endl;
cout<<"signal g(x):"<<endl<<endl;
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
cout.precision(4);
cout<<round(tab[0][i][j]*100)/100<<" ";
}
cout<<endl;
}
cout<<endl;
clock_t start = clock();
fun_discrete_fourier_transform_DFT_2D_method2(N,tab);
time2=diffclock( start, clock() );
cout<<" time="<<time2/1000<<endl;
cout<<"transformation 2D re"<<endl<<endl;
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
cout.precision(4);
cout<<round(tab[0][i][j]*100)/100<<" ";
}
cout<<endl;
}
cout<<endl;
cout<<"transformation 2D im"<<endl<<endl;
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
cout.precision(4);
cout<<round(tab[1][i][j]*100)/100<<" ";
}
cout<<endl;
}
cout<<endl;
fun_inverse_discrete_fourier_transform_DFT_2D_method2(N,tab);
cout<<"inverse transformation 2D"<<endl<<endl;
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
cout.precision(4);
cout<<round(tab[0][i][j]*100)/100<<" ";
}
cout<<endl;
}
cout<<" "<<round(tab[1][0][0]*100)/100<<endl;
cout<<" "<<round(tab[1][1][0]*100)/100<<endl;
cout<<" "<<round(tab[1][2][1]*100)/100<<endl;
cout<<endl;
system("pause");
return 0;
}
void fun_discrete_fourier_transform_DFT_2D_method1(int N,double table[][12][12])
{
int i=N,j=N,k=N,m=N;
const double pi=3.141592653589793238462;
double*** table3 = new double**[4];
//double*** table = new double**[4];//do 3 wymiarowej
for( int i = 0; i < 4; ++i)
{
//table[i] = new double*[N];//do 3 wymiarowej
table3[i] = new double*[N];
for( int j = 0; j < N; ++j)
{
table3[i][j]= new double[N];
}
}
for (int i=0;i<4;i++)
{
for(int j=0;j<N;j++)
{ for(int k=0;k<N;k++)
{
table3[i][j][k]=0;
}
}
}
for (int k=0;k<N;k++)
{
for(int l=0;l<N;l++)
{
for (int m=0;m<N;m++)
{
for(int n=0;n<N;n++)
{
//nr 1 complex number method: other combinations are possible but you need other combination in inverse method too
table3[0][k][l]=table3[0][k][l]+table[0][m][n]*cos((k*m+n*l)*2*pi/(float)N);
table3[1][k][l]=table3[1][k][l]-table[0][m][n]*sin((k*m+n*l)*2*pi/(float)N);
table3[0][k][l]=table3[0][k][l]-table[1][m][n]*sin((k*m+n*l)*2*pi/(float)N)*-1;//im*im
table3[1][k][l]=table3[1][k][l]+table[1][m][n]*cos((k*m+n*l)*2*pi/(float)N);
}}}
}
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
//nr 1;
table[0][i][j] =(table3[0][i][j]);
table[1][i][j] =(table3[1][i][j]);
//nr 2
//table[0][i][j] =(table3[0][i][j]+table3[1][i][j]+table3[2][i][j]+table3[3][i][j]);
// table[1][i][j] = 0;
}
}
for( int i = 0; i < 4; ++i)
{
for( int j = 0; j < N; ++j)
{
delete[] table3[i][j];
}
delete[] table3[i];
}
delete[] table3;
}
void fun_inverse_discrete_fourier_transform_DFT_2D_method1(int N,double table[][12][12])
{
int i=N,j=N,k=N,m=N;
const double pi=3.141592653589793238462;
double*** table3 = new double**[4];
//double*** table = new double**[4];//do 3 wymiarowej
for( int i = 0; i < 4; ++i)
{
//table[i] = new double*[N];//do 3 wymiarowej
table3[i] = new double*[N];
for( int j = 0; j < N; ++j)
{
table3[i][j]= new double[N];
}
}
for (int i=0;i<4;i++)
{
for(int j=0;j<N;j++)
{ for(int k=0;k<N;k++)
{
table3[i][j][k]=0;
}
}
}
for (int k=0;k<N;k++)
{
for(int l=0;l<N;l++)
{
for (int m=0;m<N;m++)
{
for(int n=0;n<N;n++)
{
// nr 1 complex number method: other combinations are possible but you need other combination in discrete method too
table3[0][k][l]=table3[0][k][l]+table[0][m][n]*cos((k*m+n*l)*2*pi/(float)N);
table3[1][k][l]=table3[1][k][l]+table[0][m][n]*sin((k*m+n*l)*2*pi/(float)N);
table3[0][k][l]=table3[0][k][l]+table[1][m][n]*sin((k*m+n*l)*2*pi/(float)N)*-1;//im*im
table3[1][k][l]=table3[1][k][l]+table[1][m][n]*cos((k*m+n*l)*2*pi/(float)N);
}}}
}
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
table[0][i][j] =(table3[0][i][j])/(N*N);
table[1][i][j] =(table3[1][i][j])/(N*N);
}
}
for( int i = 0; i < 4; ++i)
{
for( int j = 0; j < N; ++j)
{
delete[] table3[i][j];
}
delete[] table3[i];
}
delete[] table3;
}
void fun_discrete_fourier_transform_DFT_2D_method2(int N,double table[][12][12])
{
int i=N,j=N,k=N,m=N;
const double pi=3.141592653589793238462;
double*** table3 = new double**[4];
//double*** table = new double**[4];//do 3 wymiarowej
for( int i = 0; i < 4; ++i)
{
//table[i] = new double*[N];//do 3 wymiarowej
table3[i] = new double*[N];
for( int j = 0; j < N; ++j)
{
table3[i][j]= new double[N];
}
}
double table4[2][12][12]={};
for (int i=0;i<4;i++)
{
for(int j=0;j<N;j++)
{ for(int k=0;k<N;k++)
{
table3[i][j][k]=0;
}
}
}
for (int i=0;i<2;i++)
{
for(int j=0;j<N;j++)
{ for(int k=0;k<N;k++)
{
table4[i][j][k]=0;
}
}
}
for (int m=0;m<N;m++)
{
for(int l=0;l<N;l++)
{
for(int n=0;n<N;n++)
{//complex number method:
//nr 1 complex number method: other combinations are possible but you need other combination in inverse method too
table4[0][m][l]=table4[0][m][l]+table[0][m][n]*cos((n*l)*2*pi/(float)N);
table4[1][m][l]=table4[1][m][l]-table[0][m][n]*sin((n*l)*2*pi/(float)N);
table4[0][m][l]=table4[0][m][l]-table[1][m][n]*sin((n*l)*2*pi/(float)N)*-1;//im*im;
table4[1][m][l]=table4[1][m][l]+table[1][m][n]*cos((n*l)*2*pi/(float)N);
}}}
for (int k=0;k<N;k++)
{
for(int l=0;l<N;l++)
{
for(int m=0;m<N;m++)
{//complex number method:
table3[0][k][l]=table3[0][k][l]+table4[0][m][l]*cos((k*m)*2*pi/(float)N);
table3[1][k][l]=table3[1][k][l]-table4[0][m][l]*sin((k*m)*2*pi/(float)N);
table3[0][k][l]=table3[0][k][l]-table4[1][m][l]*sin((k*m)*2*pi/(float)N)*-1;//im*im;
table3[1][k][l]=table3[1][k][l]+table4[1][m][l]*cos((k*m)*2*pi/(float)N);
}}}
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
table[0][i][j] =(table3[0][i][j]);
table[1][i][j] =table3[1][i][j];
}
}
for( int i = 0; i < 4; ++i)
{
for( int j = 0; j < N; ++j)
{
delete[] table3[i][j];
}
delete[] table3[i];
}
delete[] table3;
}
void fun_inverse_discrete_fourier_transform_DFT_2D_method2(int N,double table[][12][12])
{
int i=N,j=N,k=N,m=N;
const double pi=3.141592653589793238462;
double*** table3 = new double**[4];
//double*** table = new double**[4];//do 3 wymiarowej
for( int i = 0; i < 4; ++i)
{
//table[i] = new double*[N];//do 3 wymiarowej
table3[i] = new double*[N];
for( int j = 0; j < N; ++j)
{
table3[i][j]= new double[N];
}
}
double table4[2][12][12]={};
for (int i=0;i<4;i++)
{
for(int j=0;j<N;j++)
{ for(int k=0;k<N;k++)
{
table3[i][j][k]=0;
}
}
}
for (int i=0;i<2;i++)
{
for(int j=0;j<N;j++)
{ for(int k=0;k<N;k++)
{
table4[i][j][k]=0;
}
}
}
for (int m=0;m<N;m++)
{
for(int l=0;l<N;l++)
{
for(int n=0;n<N;n++)
{
//complex number method:
// nr 1 complex number method: other combinations are possible but you need other combination in discrete method too
table4[0][m][l]=table4[0][m][l]+table[0][m][n]*cos((n*l)*2*pi/(float)N);
table4[1][m][l]=table4[1][m][l]+table[0][m][n]*sin((n*l)*2*pi/(float)N);
table4[0][m][l]=table4[0][m][l]+table[1][m][n]*sin((n*l)*2*pi/(float)N)*-1;//im*im;
table4[1][m][l]=table4[1][m][l]+table[1][m][n]*cos((n*l)*2*pi/(float)N);
}}}
for (int k=0;k<N;k++)
{
for(int l=0;l<N;l++)
{
for(int m=0;m<N;m++)
{
//complex number method:
table3[0][k][l]=table3[0][k][l]+table4[0][m][l]*cos((k*m)*2*pi/(float)N);
table3[1][k][l]=table3[1][k][l]+table4[0][m][l]*sin((k*m)*2*pi/(float)N);
table3[0][k][l]=table3[0][k][l]+table4[1][m][l]*sin((k*m)*2*pi/(float)N)*-1;//im*im;
table3[1][k][l]=table3[1][k][l]+table4[1][m][l]*cos((k*m)*2*pi/(float)N);
}}}
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
table[0][i][j] =(table3[0][i][j])/(N*N);
table[1][i][j] =table3[1][i][j]/(N*N);
}
}
for( int i = 0; i < 4; ++i)
{
for( int j = 0; j < N; ++j)
{
delete[] table3[i][j];
}
delete[] table3[i];
}
delete[] table3;
}
void fun_discrete_fourier_transform_DFT_2D_method3(int N,double table[][12][12])
{
int i=N,j=N,k=N,m=N;
const double pi=3.141592653589793238462;
double*** table3 = new double**[4];
//double*** table = new double**[4];//do 3 wymiarowej
for( int i = 0; i < 4; ++i)
{
//table[i] = new double*[N];//do 3 wymiarowej
table3[i] = new double*[N];
for( int j = 0; j < N; ++j)
{
table3[i][j]= new double[N];
}
}
double table4[2][12][12]={};
for (int i=0;i<4;i++)
{
for(int j=0;j<N;j++)
{ for(int k=0;k<N;k++)
{
table3[i][j][k]=0;
}
}
}
for (int i=0;i<2;i++)
{
for(int j=0;j<N;j++)
{ for(int k=0;k<N;k++)
{
table4[i][j][k]=0;
}
}
}
for (int m=0;m<N;m++)
{
for(int l=0;l<N;l++)
{
for(int n=0;n<N;n++)
{
table4[0][m][l]=table4[0][m][l]+table[0][m][n]*cos((n*l)*2*pi/(float)N);
table4[1][m][l]=table4[1][m][l]+table[0][m][n]*sin((n*l)*2*pi/(float)N);
table4[0][m][l]=table4[0][m][l]+table[1][m][n]*sin((n*l)*2*pi/(float)N)*-1;//im*im
table4[1][m][l]=table4[1][m][l]+table[1][m][n]*cos((n*l)*2*pi/(float)N);
}}}
for (int k=0;k<N;k++)
{
for(int l=0;l<N;l++)
{
for(int m=0;m<N;m++)
{
table3[0][k][l]=table3[0][k][l]+table4[0][l][m]*cos((k*m)*2*pi/(float)N);
table3[1][k][l]=table3[1][k][l]+table4[0][l][m]*sin((k*m)*2*pi/(float)N);
table3[0][k][l]=table3[0][k][l]+table4[1][l][m]*sin((k*m)*2*pi/(float)N)*-1;//im*im
table3[1][k][l]=table3[1][k][l]+table4[1][l][m]*cos((k*m)*2*pi/(float)N);
}}}
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
//nr 1;
//table[0][i][j] =(table3[0][i][j]+table3[3][i][j]);
//table[1][i][j] =(table3[1][i][j]+table3[2][i][j]);
//nr 2
table[0][i][j] =(table3[0][i][j]+table3[1][i][j]+table3[2][i][j]+table3[3][i][j]);
table[1][i][j] =0;
}
}
for( int i = 0; i < 4; ++i)
{
for( int j = 0; j < N; ++j)
{
delete[] table3[i][j];
}
delete[] table3[i];
}
delete[] table3;
}
void fun_inverse_discrete_fourier_transform_DFT_2D_method3(int N,double table[][12][12])
{
int i=N,j=N,k=N,m=N;
const double pi=3.141592653589793238462;
double*** table3 = new double**[4];
//double*** table = new double**[4];//do 3 wymiarowej
for( int i = 0; i < 4; ++i)
{
//table[i] = new double*[N];//do 3 wymiarowej
table3[i] = new double*[N];
for( int j = 0; j < N; ++j)
{
table3[i][j]= new double[N];
}
}
double table4[2][12][12]={};
for (int i=0;i<4;i++)
{
for(int j=0;j<N;j++)
{ for(int k=0;k<N;k++)
{
table3[i][j][k]=0;
}
}
}
for (int i=0;i<2;i++)
{
for(int j=0;j<N;j++)
{ for(int k=0;k<N;k++)
{
table4[i][j][k]=0;
}
}
}
for (int m=0;m<N;m++)
{
for(int l=0;l<N;l++)
{
for(int n=0;n<N;n++)
{
table4[0][m][l]=table4[0][m][l]+table[0][m][n]*cos((n*l)*2*pi/(float)N);
table4[1][m][l]=table4[1][m][l]+table[0][m][n]*sin((n*l)*2*pi/(float)N);
}}}
for (int k=0;k<N;k++)
{
for(int l=0;l<N;l++)
{
for(int m=0;m<N;m++)
{
table3[0][k][l]=table3[0][k][l]+table4[0][l][m]*cos((k*m)*2*pi/(float)N);
table3[1][k][l]=table3[1][k][l]+table4[0][l][m]*sin((k*m)*2*pi/(float)N);
table3[0][k][l]=table3[0][k][l]+table4[1][l][m]*cos((k*m)*2*pi/(float)N);
table3[1][k][l]=table3[1][k][l]+table4[1][l][m]*sin((k*m)*2*pi/(float)N);
}}}
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
table[0][i][j] =(table3[0][i][j]+table3[1][i][j]+table3[2][i][j]+table3[3][i][j])/(N*N);
}
}
for( int i = 0; i < 4; ++i)
{
for( int j = 0; j < N; ++j)
{
delete[] table3[i][j];
}
delete[] table3[i];
}
delete[] table3;
}
http://inverse-fast-fourier-transform-fft.blogspot.com/