odwrotna dyskretna transformacja fouriera iDFT 1D c++ kod źródłowy
//haven't try it with other function that cos(x)+jsin(x)=sin(x+pi/2)+jsin(x)
#include <iostream>
#include "conio.h"
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <complex>
using namespace std;
//complex number method:
void fun_fourier_transform_DFT_method5_full_complex(int N,double *table2);
//fun_fourier_transform_DFT_method6_full_complex(int N,std::complex<double> tab[])
void fun_inverse_fourier_transform_DFT_method5_full_complex_inverse(int N,double *table2);
//these others work only if audio samples are not complex numbers but result of DFT it shows complex numbers Hzthat but numbers are combinet to normal number
void fun_fourier_transform_DFT_method1(int N,double *table2);
void fun_inverse_fourier_transform_DFT_method1(int N,double *table2);
void fun_fourier_transform_DFT_method2(int N,double *table2);
void fun_inverse_fourier_transform_DFT_method2(int N,double *table2);
void fun_fourier_transform_DFT_method3(int N,double *table2);
void fun_inverse_fourier_transform_DFT_method3(int N,double *table2);
void fun_fourier_transform_DFT_method4(int N,double *table2);
void fun_inverse_fourier_transform_DFT_method4(int N,double *table2);
//inverse_method4 works only witch discrete _method4
//inverse_method2 works only witch discrete _method2
//inverse_method3 works only witch discrete _method3
static double diffclock(clock_t clock2,clock_t clock1)
{
double diffticks=clock1-clock2;
double diffms=(diffticks)/(CLOCKS_PER_SEC/1000);
return diffms;
}
int main()
{
int N;
//if N==period of signal in table tab[] then resolution = 1 Hz
//tab[A] A=2*N;
//tab[0 to N-1] -re numbers
//tab[N-1 to 2N-1] -im numbers
// period= 16 samples=16
N=16;
double tab[32]={-0.923879533,0.382683432,1.03153013,0.923879533,0.923879533,1.465075634,1.796896994,0.923879533,-0.923879533,
-2.230442498,-1.796896994,-0.158512669,0.923879533,0.382683432,-1.03153013,-1.689246397};
// period=12 samples=12
//N=12;
// double tab[32]={-0.923879533,0.70664666,0.996551596,0.923879533,1.659378744,1.369473808,-0.923879533,
// -2.29335334,-0.735499212,0.923879533,-0.072672064,-1.630526192};
//tab[20]=3.86;//im number
double time2;
for(int i=0;i<2;i++)
{
for(int j=0;j<N;j++)
{
cout.precision(4);
cout<<round(tab[j+i*N]*1000)/1000<<" ";
}
cout<<endl;
}
cout<<endl;
clock_t start = clock();
//fun_fourier_transform_DFT_method1(N,tab);
fun_fourier_transform_DFT_method5_full_complex(N,tab);
time2=diffclock( start, clock() );
for(int i=0;i<2;i++)
{
for(int j=0;j<N;j++)
{
cout.precision(4);
cout<<round(tab[j+i*N]*1000)/1000<<" ";
}
cout<<endl;
}
cout<<endl;
//fun_inverse_fourier_transform_DFT_method1(N,tab);
fun_inverse_fourier_transform_DFT_method5_full_complex_inverse(N,tab);
for(int i=0;i<2;i++)
{
for(int j=0;j<N;j++)
{
cout.precision(4);
cout<<round(tab[j+i*N]*1000)/1000<<" ";
}
cout<<endl;
}
cout<<endl;
system("pause");
return 0;
}
void fun_fourier_transform_DFT_method5_full_complex(int N,double *table2)
{
int i=N,j=N;
double (*(table1)[2]);
table1[0]=&table2[0];
table1[1]=&table2[0+N];
const double pi=3.141592653589793238462;
double** table3 = new double*[2];
for( int i = 0; i < 2; ++i)
{
table3[i] = new double[N];
}
for (int i=0;i<2;i++)
{
for(int j=0;j<N;j++)
{
table3[i][j]=0;
}
}
for (int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
//complex number method:
table3[0][i]=table3[0][i]+table1[0][j]*cos(i*j*2*pi/(float)N);
table3[1][i]=table3[1][i]-table1[0][j]*sin(i*j*2*pi/(float)N);
table3[0][i]=table3[0][i]-table1[1][j]*sin(i*j*2*pi/(float)N)*-1;//im*im
table3[1][i]=table3[1][i]+table1[1][j]*cos(i*j*2*pi/(float)N);
//other that methot is for B from inverse transform
// table3[0][i]=table3[0][i]+table1[0][j]*cos(i*j*2*pi/(float)N);
// table3[0][i]=table3[0][i]-table1[1][j]*sin(i*j*2*pi/(float)N);
// table3[1][i]=table3[1][i]-table1[1][j]*cos(i*j*2*pi/(float)N);
// table3[1][i]=table3[1][i]-table1[0][j]*sin(i*j*2*pi/(float)N);
//that methot is for C from inverse transform
// table3[0][i]=table3[0][i]+table1[0][j]*cos(i*j*2*pi/(float)N);
// table3[0][i]=table3[0][i]+table1[1][j]*sin(i*j*2*pi/(float)N);
// table3[1][i]=table3[1][i]+table1[1][j]*cos(i*j*2*pi/(float)N);
// table3[1][i]=table3[1][i]+table1[0][j]*sin(i*j*2*pi/(float)N);
//that methot is for D from inverse transform
// table3[0][i]=table3[0][i]+table1[0][j]*cos(i*j*2*pi/(float)N);
// table3[0][i]=table3[0][i]-table1[1][j]*sin(i*j*2*pi/(float)N);
// table3[1][i]=table3[1][i]+table1[1][j]*cos(i*j*2*pi/(float)N);
// table3[1][i]=table3[1][i]-table1[0][j]*sin(i*j*2*pi/(float)N);
}
}
for(int j=0;j<N;j++)
{
table1[0][j] =table3[0][j];
table1[1][j] =table3[1][j];
}
for( int i = 0; i < 2; ++i)
{
delete[] table3[i];
}
delete[] table3;
}
void fun_inverse_fourier_transform_DFT_method5_full_complex_inverse(int N,double *table2)
{
int i=N,j=N;
double (*(table1)[2]);
table1[0]=&table2[0];
table1[1]=&table2[0+N];
const double pi=3.141592653589793238462;
double** table3 = new double*[2];
for( int i = 0; i < 4; ++i)
{
table3[i] = new double[N];
}
for (int i=0;i<4;i++)
{
for(int j=0;j<N;j++)
{
table3[i][j]=0;
}
}
for (int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
//complex number method:
table3[0][i]=table3[0][i]+table1[0][j]*cos(i*j*2*pi/(float)N);
table3[1][i]=table3[1][i]+table1[0][j]*sin(i*j*2*pi/(float)N);
table3[0][i]=table3[0][i]+table1[1][j]*sin(i*j*2*pi/(float)N)*-1;//im*im
table3[1][i]=table3[1][i]+table1[1][j]*cos(i*j*2*pi/(float)N);
//other that methot is for B from discrete transform
//table3[0][i]=table3[0][i]-table1[0][j]*cos(i*j*2*pi/(float)N);
// table3[0][i]=table3[0][i]+table1[1][j]*sin(i*j*2*pi/(float)N);
// table3[1][i]=table3[1][i]-table1[1][j]*cos(i*j*2*pi/(float)N);
// table3[1][i]=table3[1][i]-table1[0][j]*sin(i*j*2*pi/(float)N);
//that methot is for C from discrete transform
// table3[0][i]=table3[0][i]+table1[0][j]*cos(i*j*2*pi/(float)N);
// table3[0][i]=table3[0][i]+table1[1][j]*sin(i*j*2*pi/(float)N);
// table3[1][i]=table3[1][i]+table1[1][j]*cos(i*j*2*pi/(float)N);
// table3[1][i]=table3[1][i]+table1[0][j]*sin(i*j*2*pi/(float)N);
//that methot is for D from discrete transform
// table3[0][i]=table3[0][i]-table1[0][j]*cos(i*j*2*pi/(float)N);
// table3[0][i]=table3[0][i]+table1[1][j]*sin(i*j*2*pi/(float)N);
//table3[1][i]=table3[1][i]-table1[1][j]*cos(i*j*2*pi/(float)N);
// table3[1][i]=table3[1][i]+table1[0][j]*sin(i*j*2*pi/(float)N);
}
}
for(int j=0;j<N;j++)
{
table1[0][j] =table3[0][j]/N;
table1[1][j] =table3[1][j]/N;
}
for( int i = 0; i < 4; ++i)
{
delete[] table3[i];
}
delete[] table3;
}
void fun_fourier_transform_DFT_method1(int N,double *table2)
{
int i=N,j=N;
double (*(table1)[2]);
table1[0]=&table2[0];
table1[1]=&table2[0+N];
const double pi=3.141592653589793238462;
double** table3 = new double*[2];
for( int i = 0; i < 2; ++i)
{
table3[i] = new double[N];
}
for (int i=0;i<2;i++)
{
for(int j=0;j<N;j++)
{
table3[i][j]=0;
}
}
for (int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
table3[0][i]=table3[0][i]+table1[0][j]*cos(i*j*2*pi/(float)N);
table3[1][i]=table3[1][i]+table1[0][j]*sin(i*j*2*pi/(float)N);
}
}
for(int j=0;j<N;j++)
{
table1[0][j] =table3[0][j]+table3[1][j];
table1[1][j] =0;
}
for( int i = 0; i < 2; ++i)
{
delete[] table3[i];
}
delete[] table3;
}
void fun_inverse_fourier_transform_DFT_method1(int N,double *table2)
{
int i=N,j=N;
double (*(table1)[2]);
table1[0]=&table2[0];
table1[1]=&table2[0+N];
const double pi=3.141592653589793238462;
double** table3 = new double*[2];
for( int i = 0; i < 2; ++i)
{
table3[i] = new double[N];
}
for (int i=0;i<2;i++)
{
for(int j=0;j<N;j++)
{
table3[i][j]=0;
}
}
for (int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
table3[0][i]=table3[0][i]+table1[0][j]*cos(i*j*2*pi/(float)N);
table3[1][i]=table3[1][i]+table1[0][j]*sin(i*j*2*pi/(float)N);
}
}
for(int j=0;j<N;j++)
{
table1[0][j] =(table3[0][j]+table3[1][j])/N;//tylko tym się różni od normalnej transformnacji
table1[1][j] =0;
}
for( int i = 0; i < 2; ++i)
{
delete[] table3[i];
}
delete[] table3;
}
void fun_fourier_transform_DFT_method2(int N,double *table2)
{
int i=N,j=N;
double (*(table1)[2]);
table1[0]=&table2[0];
table1[1]=&table2[0+N];
const double pi=3.141592653589793238462;
double** table3 = new double*[2];
for( int i = 0; i < 2; ++i)
{
table3[i] = new double[N];
}
for (int i=0;i<2;i++)
{
for(int j=0;j<N;j++)
{
table3[i][j]=0;
}
}
for (int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
table3[0][i]=table3[0][i]+table1[0][j]*cos(i*j*2*pi/(float)N);
table3[1][i]=table3[1][i]+table1[0][j]*sin(i*j*2*pi/(float)N);
}
}
for(int j=0;j<N;j++)
{
table1[0][j] =table3[0][j];
table1[1][j] =table3[1][j];
}
for( int i = 0; i < 2; ++i)
{
delete[] table3[i];
}
delete[] table3;
}
void fun_inverse_fourier_transform_DFT_method2(int N,double *table2)
{
int i=N,j=N;
double (*(table1)[2]);
table1[0]=&table2[0];
table1[1]=&table2[0+N];
const double pi=3.141592653589793238462;
double** table3 = new double*[4];
for( int i = 0; i < 4; ++i)
{
table3[i] = new double[N];
}
for (int i=0;i<4;i++)
{
for(int j=0;j<N;j++)
{
table3[i][j]=0;
}
}
for (int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
table3[0][i]=table3[0][i]+table1[0][j]*cos(i*j*2*pi/(float)N);
table3[1][i]=table3[1][i]+table1[0][j]*sin(i*j*2*pi/(float)N);
table3[2][i]=table3[2][i]+table1[1][j]*cos(i*j*2*pi/(float)N);
table3[3][i]=table3[3][i]+table1[1][j]*sin(i*j*2*pi/(float)N);
}
}
for(int j=0;j<N;j++)
{
table1[0][j] =(table3[0][j]+table3[1][j]+table3[2][j]+table3[3][j])/N;//tylko tym się różni od normalnej transformnacji
table1[1][j] = 0;
}
for( int i = 0; i < 4; ++i)
{
delete[] table3[i];
}
delete[] table3;
}
void fun_fourier_transform_DFT_method3(int N,double *table2)
{
int i=N,j=N;
double (*(table1)[2]);
table1[0]=&table2[0];
table1[1]=&table2[0+N];
const double pi=3.141592653589793238462;
double** table3 = new double*[2];
for( int i = 0; i < 2; ++i)
{
table3[i] = new double[N];
}
for (int i=0;i<2;i++)
{
for(int j=0;j<N;j++)
{
table3[i][j]=0;
}
}
for (int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
table3[0][i]=table3[0][i]+table1[0][j]*cos(i*j*2*pi/(float)N);
table3[1][i]=table3[1][i]+table1[0][j]*sin(i*j*2*pi/(float)N);
}
}
for(int j=0;j<N;j++)
{
table1[0][j] =table3[0][j];
table1[1][j] =table3[1][j];
}
for( int i = 0; i < 2; ++i)
{
delete[] table3[i];
}
delete[] table3;
}
void fun_inverse_fourier_transform_DFT_method3(int N,double *table2)
{
int i=N,j=N;
double (*(table1)[2]);
table1[0]=&table2[0];
table1[1]=&table2[0+N];
const double pi=3.141592653589793238462;
double** table3 = new double*[4];
for( int i = 0; i < 4; ++i)
{
table3[i] = new double[N];
}
for (int i=0;i<4;i++)
{
for(int j=0;j<N;j++)
{
table3[i][j]=0;
}
}
for (int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
table3[0][i]=table3[0][i]+table1[0][j]*cos(i*j*2*pi/(float)N);
table3[1][i]=table3[1][i]+table1[0][j]*sin(i*j*2*pi/(float)N);
table3[2][i]=table3[2][i]+table1[1][j]*cos(i*j*2*pi/(float)N);
table3[3][i]=table3[3][i]+table1[1][j]*sin(i*j*2*pi/(float)N);
}
}
for(int j=0;j<N;j++)
{
table1[0][j] =(table3[0][j]+table3[3][j])/N;
table1[1][j] =(table3[1][j]+table3[2][j])/N;
if(table1[0][j]>=0)
{
table1[0][j]=table1[0][j]*table1[0][j];
}
else
{
table1[0][j]=table1[0][j]*table1[0][j]*-1;
}
if(table1[1][j]>=0)
{
table1[1][j]=table1[1][j]*table1[1][j];
}
else
{
table1[1][j]=table1[1][j]*table1[1][j]*-1;
}
if(table1[0][j]+table1[1][j]>=0)
{
table1[0][j]=sqrt(fabs(table1[0][j]+table1[1][j]));
}
else
{
table1[0][j]=sqrt(fabs(table1[0][j]+table1[1][j]))*-1;
}
table1[1][j]=0;
}
for( int i = 0; i < 4; ++i)
{
delete[] table3[i];
}
delete[] table3;
}
void fun_fourier_transform_DFT_method4(int N,double *table2)
{
int i=N,j=N;
double (*(table1)[2]);
table1[0]=&table2[0];
table1[1]=&table2[0+N];
const double pi=3.141592653589793238462;
double** table3 = new double*[2];
for( int i = 0; i < 2; ++i)
{
table3[i] = new double[N];
}
for (int i=0;i<2;i++)
{
for(int j=0;j<N;j++)
{
table3[i][j]=0;
}
}
for (int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
table3[0][i]=table3[0][i]+table1[0][j]*cos(i*j*2*pi/(float)N);
table3[1][i]=table3[1][i]+table1[0][j]*sin(i*j*2*pi/(float)N);
}
}
for(int j=0;j<N;j++)
{
table1[0][j] =table3[0][j]-table3[1][j];
table1[1][j] =0;
}
for( int i = 0; i < 2; ++i)
{
delete[] table3[i];
}
delete[] table3;
}
void fun_inverse_fourier_transform_DFT_method4(int N,double *table2)
{
int i=N,j=N;
double (*(table1)[2]);
table1[0]=&table2[0];
table1[1]=&table2[0+N];
const double pi=3.141592653589793238462;
double** table3 = new double*[2];
for( int i = 0; i < 2; ++i)
{
table3[i] = new double[N];
}
for (int i=0;i<2;i++)
{
for(int j=0;j<N;j++)
{
table3[i][j]=0;
}
}
for (int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
table3[0][i]=table3[0][i]+table1[0][j]*cos(i*j*2*pi/(float)N);
table3[1][i]=table3[1][i]+table1[0][j]*-1*sin(i*j*2*pi/(float)N);
}
}
for(int j=0;j<N;j++)
{
table1[0][j] =(table3[0][j]+table3[1][j])/N;
table1[1][j] =0;
}
for( int i = 0; i < 2; ++i)
{
delete[] table3[i];
}
delete[] table3;
}
void fun_fourier_transform_DFT_method6_full_complex(int N,std::complex<double> tab[])
{
const double pi=3.141592653589793238462;
std::complex<double> tab2[16]={}; // tab2[]==N
std::complex<double> w[1]={{1,1}};
std::complex<double> w2[1]={{1,1}};
for (int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
//complex number method:
w[0].real()=cos(i*j*2*pi/(float)N);
w[0].imag()=(-sin(i*j*2*pi/(float)N));
tab2[i]=tab2[i]+tab[j]*w[0];
}
}
/*
for(int j=0;j<N;j++)
{
tab[j].real() =tab2[j].real()*2/N;
tab[j].imag() =tab2[j].imag()*2/N;
}
*/
}
http://inverse-fast-fourier-transform-fft.blogspot.com/
DFT:
inverse fourier transform iDFT 4 methods in open office
Ten komentarz został usunięty przez autora.
OdpowiedzUsuń